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Abstract
We present a theoretical study of the low frequency vibrational modes of the M13 bacteriophage
using a fully atomistic model. Using ideas from electronic structure theory, the few lowest
vibrational modes of the M13 bacteriophage are determined using classical harmonic analysis.
The relative Raman intensity is estimated for each of the mechanical modes using a bond
polarizability model. Comparison of the atomic mechanical modes calculated here with modes
derived from elastic continuum theory shows that a much richer spectrum emerges from an
atomistic picture.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Viruses are the smallest of living organisms. The designation
‘living’ is often debated since they do not have even a single
cell. However, they possess genetic material and have the
ability to reproduce, but only by attacking a host cell. This
makes them a form of obligate intracellular parasite—an
exploitative parasite that takes over the protein and genomic
replication machinery of their hosts to reproduce and survive.

Viruses present a persistent threat to all living organisms.
Viruses attack humans, plants, animals and bacteria. They
cause a multitude of diseases in humans, and are a threat
to agriculture invading both livestock and cultivated plants.
Vaccines are an effective method to protect against viral attack
if a suitable vaccine for a specific virus can be developed.
Treatment after a virus has infected its host is particularly
difficult. There are no known broad spectrum antiviral drugs—
since viruses use much of the host’s protein machinery to
reproduce, attacking this machinery attacks the host. Thus
drug therapies are often dangerous since they may produce
side effects making them unsuitable for treatments over long
times. A further difficulty in attacking viral infections is the
rapid rate of mutations of the virus. Often drugs or vaccines
quickly loose their effectiveness as mutations of the virus make
them ineffective.

Bacteriophages are viruses that attack prokaryotes.
Phages have developed ingenious strategies to survive and

are enormously diversified in their structure. This leads to
a diversity of means to attack and exploit their hosts. Some
phage structures are richly complex, with the most numerous
morphology being the tailed phages. Tailed phages have an
icosahedral head capsid attached to a collar and neck with a
contractile sheath covering a long core. At the base of the core
are long fibrous spider-like legs. Well known among this group
are the T4, λ, and φ29. Less complex are the filamentous
bacteriophages in which M13, the subject of this work, is an
example.

This paper is concerned with the vibrational properties
of the M13 virus. Why is there interest in the vibrational
properties of biological systems and in viruses in particular?
There are several reasons and we list three. The first
relates to the rather unique properties of M13. Tubular
viral structures such as M13 or the larger diameter tobacco
mosaic virus (TMV), are being developed as templates
to assemble nanostructures [1–5] such as to produce
uniform semiconductor nanoparticles or metallic nanowires.
Component size resulting in the nanoparticle synthesis
is difficult to control and nanostructures templated from
viral capsids present opportunities to create more uniform
structures. Raman scattering and vibrational mode analysis
is a non-destructive method to monitor the assembly process.
Extensive contact of a fibrous virus capsid with long wires
or semiconducting threads will alter the low frequency modes
of the virus thus producing a non-invasive means to monitor

0953-8984/09/035116+12$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/21/3/035116
http://stacks.iop.org/JPhysCM/21/035116


J. Phys.: Condens. Matter 21 (2009) 035116 E C Dykeman and O F Sankey

nanoparticle synthesis. The nanotechnological properties of
filamentous bacteriophage M13 recently led to single molecule
studies of their stretching properties in an optical trap [6].

A second reason to investigate mechanical modes is
that viruses are pathogens and their vibrational properties
potentially can be used to combat viral infections. There
has been a recent suggestion [7] that viruses can be damaged
up by exciting their vibrations. Tsen and co-workers [8–11]
have shown that inelastic light scattering with a pulsed
laser [12] may provide an effective means to destroy viruses
by resonantly exciting mechanical vibrations. As such, an
atomic level description of the displacement patterns becomes
essential in order to understand the coupling of the mechanical
modes to external probes such as light.

The third reason for studying vibrational modes is a
general one. Protein assemblies and biomolecules have
enzymatic activity that is connected to the floppy or hinged
motions of the assembly. The large scale conformational
motions of the assembly have their genesis in the very low
frequency modes. Specifically, for viruses a conformational
changes in the viral capsid is often necessary for the release
and injection of the genomic material into the host. This area of
research is still emerging, but good examples of the importance
of this effect have been identified, such as the structural
transition of the poliovirus upon interaction with a host cell
receptor [13], or a pucker-like mode about a C5-axis of the
icosahedral human rhinovirus to inject its RNA into the cell
cytoplasm [14]. Additionally, normal mode analysis (NMA)
is used to model enzyme specificity [15] and its changes
due to mutations, as well as in B-factor analysis of x-ray
structures. Normal mode analysis offers an alternative method
to molecular dynamics (MD) to study the configurations within
a single local energy minimum configuration.

In this paper, we present a method based on order
N techniques from electronic structure theory to determine
the low frequency normal modes and frequencies of large
(>104 atoms) systems using a fully atomistic classical force
field model and a full basis set. A full basis set means that the
vibrational modes are constructed from the individual atomic
displacements (3 for each atom in the system) and hence is
complete. The theoretical method extends previous work on
an icosahedral virus [16]. We model the M13 bacteriophage
as an infinitely long molecule and use periodic boundary
conditions for a single unit cell of bacteriophage which is
161.5 Å in length. First, we briefly review the order N
method used in electronic band-structure calculations. Next,
we apply these ideas from electronic systems to the problem
of finding the low frequency phonons of a classical dynamical
matrix. Then we apply the method to determine the low
frequency mechanical mode patterns and frequencies of the
M13 bacteriophage capsid, a cylindrical virus whose capsid
is composed of many alpha helical protein segments. The
relative Raman intensity for each mode is then predicted using
a bond polarizability model. Finally, the fully atomistic modes
are compared with previous studies of the M13 bacteriophage
which used continuum elastic theory to predict the frequency
and displacement patterns of its capsid.

2. Preliminaries

The ‘standard’ route for NMA involves the harmonic
approximation where the potential energy of the molecule is
Taylor expanded to second order about equilibrium in terms of
the displacements �ui of each atom i . The classical equations of
motion result in a matrix equation for the displacement pattern
u for each normal mode of frequency ω,

↔
� u = ω2

↔
M u, (1)

where the matrices
↔
� and

↔
M are the force constant matrix

(Hessian) and the diagonal mass matrix respectively. The
matrix elements are given by

�i j = ∂2V

∂uiα ∂u jβ
, Mi j = miδi j . (2)

The force constant matrix elements are second derivatives of
the total potential energy V of the molecule with respect to
displacements of atoms i and j in the αth and βth directions
respectively.

The potential energy model we use is empirical. The
second derivatives �i j are computed analytically, in the same
spirit as analytic forces are computed in MD. More details on
this will be described in the appendix. The potential energy
contains five contributions—they are due to bond stretching,
bond angle distortions, dihedral energy contributions (4-atom
terms), Coulomb interactions, and van der Waals interactions.
The parameters for these interactions are obtained from the
AMBER force field model [17]. While the AMBER force
field has parameters for water molecules, explicit water is
not included in our model. Instead, water is implicitly
included in the parameter set using the generalized Born
(GB) model [18, 19]. This is especially important for the
Coulomb interactions which include solvation effects and an
environment dependent dielectric screening. The GB model
uses a finite range for the Coulomb interactions and a 10 Å
cutoff is presently used. Thus only a direct summation is used
to evaluate Coulomb effects and Ewald summation methods
are not used even though periodicity exists. The chosen cutoff
results in screened Coulomb interactions that only extend
slightly into a single neighboring cell.

Diagonalizing the matrix equation (equation (1)) provides
a complete set of normal mode frequencies and atomic
displacement patterns of the molecule. However, as the number
of atoms in the molecule increases, diagonalization becomes
impossible. Two problems due to the large size are that (i)
the amount of computer memory required to store the force
constant matrix elements for molecules with N > 104 atoms
is often several Tb (1012 bytes) and (ii) the time required
to diagonalize equation (1) scales as the number of atoms
cubed. Direct diagonalization of the force constant matrix
can be performed on small systems (roughly on the order of
a few thousand atoms). For example, this is the approach
taken by Miller et al [15] to study the change of normal mode
displacement patterns due to mutations in α-Lytic protease.
However, large proteins and protein complexes with tens or
hundreds of thousands of atoms (like viruses) are out of reach
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with direct diagonalization methods. Hence, an alternate
method is necessary, and it must not require storage of the force
constant matrix.

Two paths can be taken. One is to simplify the problem
by physical approximations. The other is to maintain the
full problem but develop methodologies to make the problem
tractable. We first mention often used approaches that use
physical approximations. Much prior normal mode analysis
of large proteins or macromolecular structures has relied
on continuum elastic theory (CET) [11, 20, 21], the elastic
network model (ENM) [22, 23], or the rotation translation
block method (RTB) [24, 25]. These methods coarse grain [26]
the molecule (i.e. use a reduced basis set to construct the
vibrational modes) so that a normal mode analysis is possible.
Using a reduced set of coordinates is also often done to
simplify the problem. For example, dihedral and torsional
distortions have smaller restoring forces than bond or angle
stretching forces. Thus dihedral and torsional distortions
play a larger role in the low frequency oscillations, and thus
the problem is simplified by including just these degrees of
freedom. Using only rotational degrees of freedom through
torsional generalized coordinates has been used to study the
dynamic character of human blood coagulation factor and
human tissue factor [27].

A second path to study mechanical motions of large
structures is to maintain the atomistics of the problem but use
a methodology that allows at least part of the problem to be
solved. The method used and developed in this paper falls
into this category. Specifically only the low frequency modes
are determined by a functional minimization algorithm. Other
methods exist which have similar goals but use quite different
strategies. A review of some of these methods is given by
Hayward [28], and the most widely used method is the Lanczos
recursion method [29]. This method repeatedly applies the
dynamical matrix to a vector and it quickly amplifies the
eigenvectors corresponding to the extreme eigenvalues. Block
recursion can be used to iterate within a subspace. The method
must be used with extreme caution because the repeated
multiplication has instabilities and can produces ‘ghosts’ and
‘clones’ [30] which repeat multiple copies of a vector. In a full
atomistic calculation of a large biomolecule, ω may vary from
0.4 to 4000 cm−1, which means the ratio of the largest to the
smallest eigenvalue λ (=ω2) is of order 10 0002 = 108. This
makes for an ill-conditioned matrix that is particularly sensitive
to numerical round off. We have found that as a result, the
lowest eigenvalues are difficult to find using Lanczos schemes.
Nevertheless, this method has enjoyed success.

Normal mode analysis has its limitations. It is easy to
generate a long list of deficiencies, and we mention some
of the prime difficulties. First, normal mode models assume
that the biomolecule is trapped into a single minimum free
energy configuration. True biological molecules are often
sampling multiple configurations and hopping from one to
another. Second, normal mode analysis assumes that the single
configuration is harmonic about its minimum. Third, damping
due to anharmonic effects or from the solvent are not included.
And finally, to perform a normal mode analysis, the structure
of the biomolecule must be known, which is not always the

case. Normal mode analysis however gives a simple, yet
restricted, picture of at least the motions in one local minimum
energy configuration, and offers a starting point from which
advancements can be attained. For example, the effect of
damping can (at least in principle) be included by generalizing
the normal mode concept to a Langevin mode analysis which
includes a friction matrix [31].

3. Order N method for electronic structure
calculations

In this section we briefly discuss order-N methods within
the context of electronic structure. This sets the stage for
section 4 where we generalize the method for application to
mechanical vibrations. The method has been described in
abbreviated form in an earlier publication [16]. In electronic
structure calculations of a molecule or crystal, one desires
the electronic wavefunctions from the set of lowest energy
orbitals ψi . These orbitals are eigenfunctions of a Schrödinger
equation, Ĥψi = λiψi , where λi is the single particle energy
of the state ψi . The total energy has many contributions,
but the computationally difficult contribution to determine is
the ‘band-structure’ energy G, where G is the sum of single
particle energies over the occupied orbitals,

G =
∑

i(occupied)

λi . (3)

This assumes a gap between occupied and unoccupied levels
(i.e. an insulator or semiconductor). To perform the sum,
the eigenvalues must be known which requires solution of the
Schrödinger equation (assumed here to be a matrix equation
of large dimension). The matrix is assumed to be too large
to diagonalize directly. However, G requires only a subset of
eigenvalues (those corresponding to the occupied states); thus
diagonalization of the full matrix gives far more information
than needed. Thus an alternative scheme is used which leads to
minimization of an energy functional for G that gives precisely
the same result as equation (3).

The beginning concept is to rewrite G using properties of
a Trace and the Fermi–Dirac operator as

G = Tr( f̂ Ĥ), (4)

where Tr denotes the trace and f̂ is the Fermi–Dirac operator

f̂ (Ĥ , μ) = 1

eβ(Ĥ−μ) + 1
. (5)

We assume the low temperature insulating regime where
the chemical potential μ lies within the bandgap, so that
eigenstates ψi are either ‘occupied’ (λi < μ) or ‘unoccupied’
(λi > μ). Thus

f̂ (Ĥ , μ)ψi = 1 × ψi if λi < μ

f̂ (Ĥ , μ)ψi = 0 × ψi if λi > μ.
(6)

The trace in equation (4) can be performed over any
complete orthonormal basis set of states. Since the unoccupied
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states do not contribute to G, using any orthonormal basis
φi that spans the occupied states to compute the trace in
equation (4) leads to exactly equation (3).

In light of the above arguments, a functional minimization
can be introduced over a smaller set of M occupied states
which are varied (V),

GV = Min[TrM (H )]. (7)

The M states are varied so as to minimize G. Since the trace
extends over only M states, the storage of state vectors is
greatly reduced. However, the minimum of GV occurs when
all electrons drop down into a lowest level with eigenvalue λ0,
i.e. the M states become just one state repeated M times. The
functional GV (equation (7)) is ignorant of the Pauli exclusion
principal and of orthogonality of the state spectrum of single
particle levels.

This is a severe obstacle which made such approaches of
little use. In the early to mid 90s several so-called order-N
breakthroughs occurred that solved this problem. There are
now many ways to proceed [32–35], and deep connections
exist amongst the many ways. For example the method of
Nunes et al focused on idempotency of the density matrix—
idempotency in the eigenfunction representation is tantamount
to having N occupied states that are orthonormal. We use
the Ordejon, Drabold, Martin and Grumbach (ODMG) [32]
functional minimization that enforces the orthogonality and the
exclusion principal. The ODMG is deceptively simple and is

GV = Min[TrM(H + H (1 − S))]. (8)

The trace is over the M × M matrices H and S formed with
M vectors φi . The overlap matrix S has elements given by
Si j = 〈φi |φ j 〉. The vectors φi are varied as part of the
minimization procedure, and once minimized, the M vectors
form an orthogonal set that span the space of the M lowest
energy states of Ĥ . The value of GV at the minimum (and
nowhere else) is precisely the value of equation (4).

That such a simple function gives the exact result is
somewhat surprising. To see how it works, let us consider
a Hamiltonian with a single normalized state ψ0 with energy
−λ0. Then the single stateψ0 is an eigenstate of Ĥ . We choose
a vector φ to perform the trace, and since the problem is a
(trivial) one-dimension problem, φ can only be proportional
to ψ0, which we write as |φ〉 = √

(S)|ψ〉. The parameter
S is varied in order to minimize GV. The matrix elements
are S = 〈φ|φ〉 and H = 〈φ|Ĥ |φ〉 = −Sλ0 which yields
GV = Min[−Sλ0 + Sλ0(1 − S)]. The expression for GV can
be manipulated to GV = −λ0 + λ0(1 − S)2. Figure 1 shows
GV (equation (8)) and the various contributions. Also shown
is Tr(H ) = −λ0S. Clearly Tr(H ) has no minimum. The
effect of the ODMG functional is to add a ‘harmonic potential’
λ0(1 − S)2 to −λ0. This produces a minimum energy for GV

at the correct result −λ0 and at the properly normalized state
〈φ|φ〉 = S = 1.

One notes that if the eigenvalue −λ0 were instead +λ0, the
curvature of the harmonic potential changes sign and instead
of a minimum at the correct value of S = 1, GV has a
maximum value. This is a limitation of the method— H must

Figure 1. A plot of the ODMG energy functional (GV) as a function
of the overlap S for a Hamiltonian matrix of one dimension with
single eigenvalue −λ0. The overlap S is the single variational
parameter. The two contributions to GV are shown (−λ0 and
+λ0(1 − S)2). The sum of these two is GV = Tr(H + (1 − S)H) is
also shown. Note that effectively there is a harmonic potential which
acts to drive the system toward the correct normalized state (S = 1)
with correct energy −λ0. The simpler energy functional Tr(H) for
this one-dimensional illustratory example is −λ0 S, which has no
minimum.

have a completely negative spectrum in order to produce a
minimum. We will deal with this complication in section 4 for
the vibrational problem which has a positive definite spectrum
for a stable system.

4. Functional for the low frequency vibrations

In biomolecular complexes such as viruses, the low frequency
vibrations (e.g. <25 cm−1) are of most interest since low
frequency modes characterize either the ‘floppy’ regions or
relate to global motions of large regions within the complex.
Large global motions are likely to be involved in breaking
apart the virus during resonant excitations from external
probes. A large biomolecular system has many high frequency
deformations while the desired low frequency motions are
much less numerous. This is the viewpoint taken in the
present study. Our primary motivation is to seek low frequency
motions that are targets to excite for inactivation of a virus.

To determine the low frequency modes, we make an
analogy between the low frequency phonon problem and the
electronic structure problem. We consider the wanted low
frequency phonon states to be a set of ‘occupied’ states in the
spectrum and the high frequency states to be an ‘unoccupied’
set. This has the effect of introducing a pseudo-Fermi
level in the vibrational frequencies ωF. Figure 2 illustrates
the basic idea where the lowest M states of the phonon
spectrum are ‘occupied’ while all other states are ‘unoccupied’.
Essentially, we treat phonons as fermions (from a purely
mathematical perspective) making the problem mathematically
identical to the electronic structure problem. This is strictly
a device to obtain the sub-spectrum of a matrix (here the
dynamical matrix, and for the electronic structure problem the
Hamiltonian matrix). Once the sub-spectrum is obtained, the
improper statistics are never used to incorrectly compute a
physical quantity.
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Figure 2. A schematic number of states as a function of frequency ω.
States below a pseudo-Fermi level ωF act as occupied states in the
algorithm, and states above are unoccupied. Upon convergence, the
functional minimization of Gp produces the eigenvectors and
frequencies ω of the dynamical matrix for all ‘occupied’ levels.

We now introduce the phonon (p) energy functional as

Gp = Min[TrM (H + H (1 − S))]. (9)

The ‘Hamiltonian’ matrix H and the overlap matrix S are
small M × M matrices with elements defined in terms of the
dynamical matrix

↔
D and the variational vectors |u〉

Hi j = 〈ui |D̂s|u j〉
Si j = 〈ui |u j〉.

(10)

The operator D̂s is the shifted dynamical matrix operator
D̂s = D̂ − λL Î , where λL is the largest eigenvalue of D̂.
The purpose of the shift is to produce a negative definite
spectrum which guarantees an energy minimum in the ODMG
energy functional [32], and hence in Gp. As was seen in our
example illustration in figure 1, a minimum is produced when
the eigenvalue is negative and a maximum produced when
it is positive. The shift leaves the eigenvectors unaffected.
The largest eigenvalue λL is quite easy to find. The Lanczos
recursion iteration technique rapidly converges to produce
λL, especially since the ratio between the lowest (non-zero)
eigenvalue and the largest is of order 108. Usually less than
ten recursion iterations are needed for convergence. As a
precaution, a small safety buffer of a couple percent is added
to λL.

The search for the M lowest frequency modes of D̂ begins
by choosing a random set of M vectors |ui〉 (i = [1,M]) that
need not be orthogonal or even normalized. The functional Gp

upon iteration will automatically enforce orthonormality. The
phonon energy functional (equation (9)) is then minimized.
The phonon functional Gp is a function of 3N × M variables
(M vectors times 3N components). Despite the size of
the minimization space, the minimization procedure proceeds
quickly since there is an infinity of solutions—any set of
orthonormal vectors that span the subspace of the M lowest
states D̂ is a solution. This produces a wide target.

After minimization is completed, the vectors |ui〉 are an
orthonormal set of vectors that span the space of the lowest M
states of D̂. The vectors |ui〉 are not eigenvectors of D̂. The

true eigenvectors (|ei 〉) are obtained from a diagonalization of
the small M × M matrix equation

H C(i) = λ′SC(i). (11)

The overlap matrix S will be the identity matrix at the exact
minimum; since computational convergence is never perfect,
including the computed overlap S at this step partially corrects
errors.

The eigenvalues λ′ are shifted from the true eigenvalues of
D̂ via λ′ = λ−λL. The vector C(i) of length M gives the linear
combination of basis vectors |u〉 that produce the eigenvector
|ei〉 i.e.

|ei〉 =
M∑

j=1

C j (i)|u j〉. (12)

5. Minimization of the phonon functional Gp

Any minimization scheme can be used to minimize the phonon
energy functional Gp (equation (9)). Here we describe the
use of a conjugate gradient method (CG), which we found to
work well. There are many forms of CG that seek to optimize
convergence. We use the method of Pollak and Ribiere [36]
which converges better than the traditional Fletcher–Reeves
method. An important practical feature of a CG minimization
of the Gp functional is that the line minimization needed
to perform a conjugate gradient step is done analytically
(described below). This is quite fortunate since it eliminates
much of the computational expense of the CG algorithm.

Consider the kth current vector at the nth iteration to be
|un

k 〉 and the CG search direction vector for a new minimum to
be along |pn

k 〉. The gradient of Gp is needed in the construction
of the search direction vector. The gradient |gn

k 〉 of the vector
|un

k 〉 at step n is obtained by differentiating equation (9) with
respect to the current state |un

k 〉,
|gn

k 〉 = 4D̂s|un
k 〉 + 2

∑

i

D̂s|un
i 〉〈un

i |un
k 〉

+ 2
∑

i

|un
i 〉〈un

i |D̂s|un
k 〉. (13)

The gradient is used to form the CG search direction vector

|pn
i 〉 = −|gn

i 〉 + βn|pn−1
i 〉. (14)

In CG, βn is determined by taking a ratio of the magnitudes of
new and old gradients. For a standard function of s variables,
the gradient will have a total of s components. The phonon
energy functional Gp has a gradient of 3N × M components
that are given by the M individual gradient vectors of length
3N for each state vector (equation (13)). Thus, the Pollak and
Ribiere CG constant [36] βn is given by

βn =
∑

i [〈gn
i |gn

i 〉 − 〈gn
i |gn−1

i 〉]
∑

i 〈gn−1
i |gn−1

i 〉 . (15)

The line minimization is achieved by updating all vectors
by taking the same step size γ n . Thus

|un+1
i 〉 = |un

i 〉 + γ n|pn
i 〉. (16)

5



J. Phys.: Condens. Matter 21 (2009) 035116 E C Dykeman and O F Sankey

For a general function of s variables, an extremum will occur
at a point along a search direction if and only if the gradient
vector of the function with s components is perpendicular to
the search direction at that point. Thus, in order for the phonon
energy functional Gp with 3N × M variables to be minimized,

∑

i

〈gn+1
i |pn

i 〉 = 0 (17)

must be satisfied.
Equation (16) can be substituted into equation (13) to

form the gradient at step n + 1. Then taking the dot product
with the search directions and summing over all vectors, the
orthogonality condition (equation (17)) yields a cubic equation
in terms of the step γ n

A(γ n)3 + B(γ n)2 + C(γ n)+ D = 0, (18)

where the coefficients A–D are defined as (using an Einstein
summation convention)

A = 4〈pn
i |pn

j 〉〈pn
j |D̂s|pn

i 〉
B = 3〈pn

i |D̂s|pn
j 〉

(〈pn
j |un

i 〉 + 〈un
j |pn

i 〉
)

+ 3〈pn
i |pn

j 〉
(〈pn

j |D̂s|un
i 〉 + 〈un

j |D̂s|pn
i 〉

)

C = −4〈pn
i |D̂s|pn

i 〉 + 2
(〈pn

i |D̂s|un
j 〉 + 〈un

i |D̂s|pn
j 〉

)

× (〈pn
j |un

i 〉 + 〈un
j |pn

i 〉
)

+ 2〈pn
i |D̂s|pn

j 〉〈un
j |un

i 〉 + 2〈un
i |D̂s|un

j〉〈pn
j |pn

i 〉
D = −4〈pn

i |D̂s|un
i 〉 + 〈un

i |D̂s|un
j〉

(〈pn
j |un

i 〉 + 〈un
j |pn

i 〉
)

+ 〈un
i |un

j 〉
(〈pn

j |D̂s|un
i 〉 + 〈un

j |D̂s|pn
i 〉

)
.

(19)

The solution to the cubic equation produces two possibilities
for the roots: (i) one real and two complex roots, or (ii) three
real roots. In case (ii), the root which most deeply minimizes
the Gp functional is selected. Once the step size γ n has been
obtained, the vectors |un

i 〉 are updated using equation (16). The
dynamical matrix operating on the vectors |un

i 〉 can also be
updated

D̂s|un+1
i 〉 = D̂s|un

i 〉 + γ n D̂s|pn
i 〉. (20)

Each step of the minimization procedure of Gp will require
M dynamical matrix operations on a vector—one necessary for
the update of each |ui〉. Although the time to minimize the
phonon functional is likely to have a complicated dependence
on M and N , some estimates can be made. Since the dynamical
matrix operating on each vector can be computed in order N
steps (see appendix), a very simple approximation is that the
time for minimization of the phonon functional scales roughly
as order M N .

The total number of vectors of length 3N that must be
stored for the CG procedure is 5M . Since the density of states
is small at low frequencies, M = 100−200 is usually sufficient
to reach 30 cm−1 when N = 104 with a memory requirement
of roughly 114 MB (double precision). The calculations
reported in section 6 are performed with one processor on a
unix PC.

Figure 3. The structure of the M13 tubular vial capsid. (a) A single
α-helix building block protein. (b) The single α-helix proteins are
arranged in a tubular (helical symmetry) fashion on the outer surface
of a cylinder. The system is periodic and the segment shown, which
contains 50 single α-helix building block proteins, is one full period
which has a length of roughly 16 nm.

6. Low frequency modes of M13 phage

M13 is a filamentous bacteriophage with a circular single
stranded DNA genome of approximately 6400 nucleotides.
The virus belongs to the viral family Inoviridae. The virus has
no envelope and is a model system to study the properties of
viruses. It is often used in biological modeling because of its
small genome which codes for only about ten proteins. The
structure of the M13 bacteriophage capsid is a long, hollow
cylindrical tube composed of α-helix building units, as shown
in figure 3(a), arranged on a tubular surface. A single α-helix
is composed of 50 amino acids and has a total of 741 atoms.
The full capsid structure is built using multiple copies of the
α-helix building block arranged using helical symmetry. The
final full capsid structure has a length and diameter of roughly
800 nm and 6 nm respectively.

Since the full capsid structure is composed of repeating
α-helix building blocks, the structure is periodic and can be
treated as a long (infinite) tube with a unit cell. A single
periodic unit is illustrated in figure 3(b). The periodic unit is
composed of 50 α-helix building blocks that form a segment
of the capsid that has a length of approximately 16 nm with a
total of 37 050 atoms (including hydrogen).

Coordinates for the single alpha helix building block
(figure 3(a)) were obtained from the protein data bank (PDB
code 2C0W). The 2C0W structure was determined from x-
ray crystallography [37]. The 2C0W coordinates were used
to construct a periodic segment of the full tubular capsid by
assembling 50 copies using the rotation matrices provided in
the PDB file. This created a periodic unit where the tube
axis was aligned with the z-axis. Periodic boundary conditions
were used. The system is made to have artificial periodicity in
the lateral x and y directions by inserting replicas of the central
tube. The lateral lattice vectors were made large enough so that
there were no interactions with nearest neighboring tubes in the
x and y directions.

The 37 050 atoms in the periodic unit were minimized
using the AMBER 94 [17] force field with generalized Born
Coulomb interactions [18, 19, 38] in the molecular dynamics
program suite Saguaro [39]. A 10 Å cutoff was used for both
the generalized Born and van der Waals interactions. The RMS
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gradient of the final optimized structure was <0.001 eV Å
−1

and produced an RMSD from the x-ray structure of 1.61 Å.
This minimization procedure is constant with other work [40]
where the goal of minimization is to keep the structure within
about 1 Å of its x-ray structure. Since the final RMS gradient
was not zero to machine precision, negative eigenvalues λ =
ω2 < 0 can occur. A total of 49 negative eigenvalue states were
found. An examination of the negative eigenvalue states that
appeared in our calculation showed that their eigenvectors were
highly localized on a few atoms (<100) and their frequency
was small in magnitude (<20 cm−1). For example, one
negative mode had displacements located on the last amino
acid of a single α-helix building unit. The other negative modes
are similar to this. Thus these modes correspond to ‘dangling’
regions. As such, they are ignored in what follows.

The phonon energy functional Gp (equation (9)) was CG
minimized for M = 200 vectors using the analytical cubic
equation scheme described above. The optimized coordinates
of M13 were used to calculate the operation of the dynamical
matrix on a vector using a 10 Å cutoff for the electrostatic
and van der Waals interactions (see appendix for details of the
procedure). The length of each vector, which is the dimensions
of the space for a single unit cell, is 111 150 (3N = 3 ×
37 050). Approximately 4000 CG steps were performed which
required a total of roughly 8×105 dynamical matrix operations
on a vector. The computational cost can be thought of as
approximately 8 × 105 MD steps on 37 050 atoms.

Since minimization on a computer rarely achieves a zero
gradient, we calculated the residual ‘error’ vector (|r〉 =
D̂|e∗〉 − λ∗|e∗〉) for each of the low frequency modes of M13.
The vector |e∗〉 is the approximate eigenvector calculated with
equation (11) and λ∗ is the approximate eigenvalue given by
λ∗ = 〈e∗|D̂|e∗〉. The magnitude of the residual vectors were
approximately |r | ≈ 10−4 for all of the low frequency modes
of M13 calculated with the phonon energy functional. Tests
on other smaller molecules such as ubiquitin have shown that
eigenvectors with residuals of this magnitude have errors in the
frequencies on the order of 0.01cm−1.

Continuum theory [11] predicts four basic types of mode
displacement patterns for a tubular virus—radial, torsional,
radial-torsional, and axial. The atomistic modes of M13
however will have some amount of displacement along each
of the cylindrical unit vector directions. This is due to the
atomistic structure of the capsid which tends not to permit pure
radial, torsional, or axial motion. Nevertheless, the atomistic
modes can also be separated into one of these four categories
based on the direction of a majority of the displacement
pattern. Table 1 lists the 30 lowest frequencies of the M13
phage and its mode type, as well as the participation number
(Wλ). The participation number for the mode gives a measure
for how localized or extended the displacement pattern is. The
participation number Wλ is defined as

Wλ = eSλ , (21)

where Sλ is the (information) entropy of the mode given by

Sλ = −
∑

pi(λ) ln [pi(λ)]. (22)

Table 1. Frequencies (ωi in cm−1) and participation numbers Wi for
the 30 lowest modes of the M13 bacteriophage capsid. Full
participation is 37 050. Each mode is given a corresponding type of
radial (R), axial (A), torsional (T), or radial-torsional (RT) based on
direction of a majority of the displacement pattern (>50%).

Type ωi Wi Type ωi Wi

RT 1.45 10 616 RT 3.57 23 408
RT 1.62 30 496 RT 3.60 17 527
RT 1.74 34 123 RT 3.65 22 527
RT 1.89 26 039 RT 3.72 19 154
RT 2.20 6 690 RT 3.80 25 295
RT 2.49 4 224 RT 3.82 23 583
T 2.67 24 955 RT 3.88 22 497
T 2.72 21 293 A 3.97 23 500
RT 3.15 18 103 A 3.98 24 860
RT 3.25 22 763 RT 4.02 22 820
RT 3.28 20 219 RT 4.15 18 318
RT 3.31 21 853 RT 4.20 23 086
RT 3.36 23 557 RT 4.29 18 831
RT 3.40 23 112 RT 4.37 18 668
RT 3.54 24 201 RT 4.43 18 287

The probabilities pi(λ) are the squared component of the
normalized relative displacements for each atom/direction i ,
pi(λ) = |�ηi(λ)|2, where �ηi (λ) ∝ M− 1

2 �ei(λ), and 〈ηλ|ηλ〉 =
1. Note that we normalize η(λ) for this purpose—ordinarily
it is the eigenvector of the dynamical matrix, e(λ), that is
normalized, not the displacement pattern. The participation
number gives (roughly) the number of atoms that participate
in the vibrational mode. A high participation number indicates
a large number of atoms are involved and thus involves a
global motion. A low participation number on the other hand
indicates that very few atoms are displaced and the mode is
localized.

The first four modes (table 1) are essentially transverse
sound waves that propagate down the axis (z-axis) of the capsid
shell, and are similar to waves on a string. The four modes are
located at 1.45, 1.62, 1.74 and 1.88 cm−1. Two of the modes
(at 1.45 and 1.62 cm−1) are cosine waves with transverse
displacement patterns (one along x and the other along y). The
next set of transverse waves (at 1.74 and 1.88 cm−1) are sine
waves also with perpendicular displacement patterns. Two of
the wave patterns are illustrated on a single periodic unit of
the M13 capsid in figure 4. Figure 4(a) shows the mode at
1.45 cm−1 and figure 4(b) shows the mode at 1.74 cm−1. The
arrows in the figures represent the center of mass motion of
a single α-helix building block that is composed of 50 amino
acids. The other two modes at 1.62 and 1.88 cm−1 are not
shown since they have nearly identical displacement patterns
as the modes at 1.45 and 1.74 cm−1 respectively, but along the
perpendicular y-axis.

In an elastic continuum, these modes would be four-
fold degenerate. However, since the capsid is composed of
many α-helices arranged with helical symmetry about the z-
axis, the displacements are not symmetric. For example,
because the cosine wave is shifted by a phase factor the
largest amplitudes occur on a different section of the α-
helical building blocks compared with the sine waves. This
produces the small splitting of the frequencies. It is interesting
that a relatively simple calculation of the transverse speed of
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Figure 4. Transverse ‘waves on a string’ modes of one polarization
(along x) for M13. (a) The mode at 1.45 cm−1 with cos (kz)
dependence. (b) The mode at 1.74 cm−1 with sin (kz) dependence.
Due to internal structure of the capsid, neither the x and y
polarizations nor the sin and cosine wave forms are degenerate as in
an elastic continuum theory.

sound in the capsid can be computed via ω = ct k for the
four different waves yielding values that range from ct =
702.5 to 910.8 m s−1. The last result is consistent with
the speed of sound used in continuum model studies (ct =
915 m s−1) of the M13 phage [11, 20] taken from experiments
on lysozyme [41]. The NMA with the atomistic structure
however, provides an indication that a single value for the
speed of sound in a nanoscale material may produce some
inconsistencies.

The next highest frequency modes examined (illustrated
in figures 5(a) and (b)) are a pair of torsional modes located
at 2.67 and 2.72 cm−1. These modes provide a twisting of the
capsid (like the wringing of a dish cloth) about the z-axis of
the capsid. The mode at 2.72 cm−1 is phase shifted from the
2.67 cm−1 mode by a factor of π/2 along the z-axis. These
two modes produce a cos (kz) and sin (kz) dependence along
the z-axis similar to that of the string modes. Again, there is a
small splitting in the frequencies due to the atomic structure of
the tube.

The next modes examined at 3.25, 3.28, 3.36, and
3.40 cm−1 can be best described as a transverse (to the tube
axis) compressional squash of the capsid. The top view
(looking down the x-axis) of the mode pattern at 3.25 cm−1

is illustrated in figure 6(a) and the view from down the
axis of the tube (z-axis) is shown in (b). The transverse
compression squeezes the capsid inward along the x-axis while
the capsid expands outward along the y-axis. These modes are
uniform down the z-axis i.e. they have no cos (kz) or sin (kz)
dependence.

The last two mode patterns that we show are (i) a pair of
axial modes (one of the pair is shown in figure 7(a)) located
at 3.97 and 3.98 cm−1 and (ii) a breathing mode located at
5.22 cm−1 (figure 7(b)). The axial modes have a majority of
their displacement along the z-axis of the capsid. The axial
mode shown can be best described as a ‘shearing’ of the capsid
along the z-axis which results in the top and bottom halves

Figure 5. Torsional modes of the M13 capsid. (a) The mode at
2.67 cm−1 which has cos (kz) dependence. (b) The mode at
2.72 cm−1 with sin (kz) dependence. Due to the atomic structure of
the capsid there is a small splitting of the frequency.

Figure 6. Compressional mode of the M13 capsid at 3.25 cm−1

viewed from two different locations. The displacements result in
capsid compression along the x-axis and capsid expansion along the
y-axis. (a) Looking down the x-axis at the top of the tube.
(b) Looking down the z-axis of the tube.

of the capsid moving in opposite directions. Looking down
the z-axis of the tube, one would see one half of the capsid
moving towards the viewer and the other half moving away.
The breathing mode (figure 7(b)) has each α-helix building
block moving approximately radially outward. Both modes (i)
and (ii) are uniform down the z-axis of the capsid.

All of the modes shown above are also predicted in
continuum theory [11]. The frequencies of the modes of
the M13 capsid predicted with the continuum model and the
atomistic model are compared in table 2. The few lowest
frequencies and mode patterns predicted with continuum
theory compare quite well with the atomistic predictions.
But there are significant discrepancies. First, continuum
theory predicts the next set of low frequency modes, after the
breathing mode to be at around 10.0 cm−1. The atomistic
model predicts many more modes in the range of 3.0–
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Figure 7. An axial mode and the breathing mode of the M13 capsid.
(a) The axial mode of the M13 capsid at 3.97 cm−1. The top half of
the capsid shell moves in along the −z-axis while the bottom half
moves along the +z-axis. (b) The radial breathing mode at
5.22 cm−1. The displacements of each α-helix building block is
approximately radially outward.

Table 2. Comparison of some of the frequencies predicted with a
continuum elastic theory (CET) [11] and with an atomistic model
(AM). Frequencies are listed in cm−1. The corresponding figure
showing the atomistic displacement pattern is also given.

CET AM Figure

1.22 3.25 6
1.85 3.97 7(a)
1.87 1.45 4
2.60 2.67 5
3.29 5.22 7(b)

10.0 cm−1. Second, the displacement patterns have small
fundamental differences. These differences may be important
when predicting Raman spectra which depends directly on
atomic displacements.

7. Raman spectral predictions for M13 phage

We now evaluate the Raman spectra of the M13 bacteriophage
of an ensemble in solution using a simple empirical bond
polarizability model for the quantum mechanical matrix
elements of the polarizability derivatives that determine the
Raman cross section. In solution, the viral particles will have a
random orientation on average, and this is the case we consider
here. Thus, one can derive [11] the average relative Raman
intensity received by the detector (at polar angle �)

Iavg ∝ 1

2

λR

ω

[
Tr(�

↔
χ)

]2 + μR

ω
Tr

([
�

↔
χ

]2
)
, (23)

where
↔
χ is the 3 × 3 susceptibility tensor and λR and μR are

geometric factors, λR = [4−6 sin2�] and μR = [14−sin2�].
To calculate the change in susceptibility, we use the

bond polarizability model [42–44] which calculates the total

susceptibility as a sum over individual bond polarizabilities,

�
↔
χ=

∑

bonds

�
↔
α, (24)

where the change in the polarizability of single bond (between
say atoms i and j ) is

�
↔
α= (∇i

↔
α) · �ηi + (∇ j

↔
α) · �η j . (25)

The del operator ∇i denotes the gradient with respect to only
atom i and �ηi is the displacement vector for atom i , |η〉 =
M− 1

2 |e〉. The polarizability tensor
↔
α for a single bond can be

written in terms of the projector operator

↔
α= α‖

↔
P +α⊥(

↔
I − ↔

P), (26)

where
↔
P= |d̂〉〈d̂| and d̂ is the unit direction vector for that

bond.
In general, each bond will have a unique set of

polarizability parameters that are required for the bond
polarizability model. For the M13 phage capsid, we expect that
the important contributions to the Raman intensity come from
symmetry of the individual bond motions in the capsid due to a
vibrational displacement and that differences in polarizability
parameters of each bond have a smaller contribution. Thus as
a first approximation we use a single set of parameters (from
carbon–carbon bonds in C60 and C70 Raman spectra fits) for
the model. Two choices can be made for the parameters and
we examine the result from both.

The first set of parameters were obtained from Snoke and
Cardona [42]. The parameters were obtained from fits to the
Raman spectra of C60. This resulted in fitted parameters for
single bonds of α′

‖ − α′
⊥ = 1.20 Å

2
, 2α′

⊥ + α′
‖ = 1.70 Å

2
, and

(α‖ − α⊥) = 0.50 Å
3
. Similar parameters were also obtained

by Guha et al [44] using vibrational eigenvectors calculated
from first-principles. The static polarizability properties and
the Raman scattering intensities in molecular C60 and C70

are found to be well reproduced by a bond polarizability
model with parameters similar to those obtained from studies
of hydrocarbons. For the Raman spectrum of C60 with off-
resonance infrared laser excitation, a fit using first-principles
vibrational eigenvectors yields α′

⊥ − α′
‖ = 2.30 Å

2
and

2α′
⊥+α′

‖ = 2.30 Å
2

for single bonds with (α‖−α⊥) arbitrarily

set equal to its value in ethane, namely, 1.28 Å
3
.

The displacement patterns from the fully atomistic NMA
were used to construct the relative Raman intensity for the
modes using equation (23) at a detector angle of � = 90◦.
Figure 8 shows the relative Raman intensity of the modes
between 0 and approximately 10 cm−1. A broadening of
0.75 cm−1 was used. The Raman intensity using polarizability
parameters from Snoke and Cardona is shown in figure 8 as
the solid line. The dashed line is the Raman intensity when
parameters from Guha et al are used. Both results give a single
peak near 5.5 cm−1 and are remarkably similar.

For the purposes of comparison, we have also calculated a
theoretical Raman profile for the M13 phage using continuum
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Figure 8. Relative Raman spectra predictions of the M13 capsid
using displacement patterns from the atomistic model. Two curves
are shown corresponding to different sets of polarizability
parameters. The solid line was obtained using parameters from [42]
and the dashed line from parameters in [44]. The results show
predictions that are qualitatively independent of the parameter set
chosen.

elastic theory to predict the mode patterns. The susceptibility
tensor required for the Raman predictions is calculated using
an ‘averaged’ bond polarizability model (Amorphous Isotropic
Bond Polarizability model) which was highlighted in our
previous work [11]. Figure 9 shows all Raman active modes
between 0 and 15.0 cm−1 that are predicted by continuum
elastic theory. A broadening of 0.75 cm−1 was applied
to each peak as in the atomistic case. In the continuum
case three distinct peaks emerge compared with the single
peak that results when atomistic modes are used. This is
due to the large number of additional modes with small
frequency difference (0.1 cm−1) which combine to give a
single broad peak in the atomistic model. Experimental
low frequency Raman scattering measurements have been
performed on the M13 phage and also show a single broad
peak at approximately 8.5 cm−1 [45], in close agreement
with the atomistic prediction. The likely conclusion that can
be drawn is that many vibrational modes contribute to the
Raman intensity. However, since the experiment was unable
to resolve frequency differences less than 5.0 cm−1 due to
inhomogeneous broadening, it is unclear if the experimental
Raman profile was indeed the result of many modes or just a
few.

8. Effects of water dampening

Viral capsids are present in a diverse medium of water, ions,
and other molecules. Although the potential energy model
used in the present work includes interactions with water in
an average way, it does not incorporate dampening affects.
Dampening due to the presence of water affects the vibrational
frequencies of the capsid as well as the rate of decay of the
vibrational amplitude. It is likely that some modes will be
highly damped due to their tight coupling with the solvent,
while others have only minor dampening. Dampening is an
important effect as it will determine which modes are the most
susceptible to being resonantly pumped and have significant
lifetimes.

Figure 9. Relative Raman spectra predictions of the M13 capsid
using displacement patterns from the continuum model.
The calculation of the intensity profile follows the procedure in [11].
The contribution from all Raman active modes are shown.

In previous work, dampening has been studied using
continuum models [21, 46, 47] in which the viral capsid
(treated as an elastic material) is embedded within a second
elastic material with appropriate Lamé constants. In a
continuum study of the M13 phage, Fonoberov et al [21] have
performed this analysis. For the first couple of radial modes
of M13, they obtain frequency shifts on the order of 0.3 cm−1.
The quality factors were 3.6–10 for the first couple of radial
modes in M13. Thus the effects of dampening on tubular
capsid appears to be significant, but the undamped modes
offer a reasonable starting approximation of their dynamical
properties. Dampening in spherical viruses have been studied
by Murray et al [47] and Talati et al [46]. Murray performed
a dimensionless analysis which gives a broad worldview of
what is expected. The results depend of the radius of the
virus, and the spherical harmonic � value of the vibration.
For a 50 nm diameter spherical virus, the imaginary part
of the frequency (the dampening) is generally 5–20% of the
oscillatory frequency. Higher angular momentum � values
give the largest dampening for the very lowest frequency
modes.

Currently the phonon functional produces no estimates
for the dampening produced by the surrounding solvent. A
future direction of research is to incorporate dampening effects
into the functional. A natural method to accomplish this
is to use the method of Langevin modes [31]. Langevin
dynamics includes a frictional interaction of the atoms of
the molecule with the solvent. Such interactions can be
estimated by viscous Stokes interactions of the atoms of the
virus that are accessible to solvent. The mathematical problem
of determining Langevin modes requires diagonalization of a
6N × 6N non-symmetric Langevin matrix. This matrix has
similarities to the 3N × 3N symmetric dynamical matrix. The
doubling of dimensionality occurs because both displacement
and velocity become involved. If this future extension of the
phonon function to Langevin modes is successful, the phonon
functional method would provide atomic detail in describing
solvent dampening effects.
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9. Conclusions

We have presented a fully atomistic normal mode analysis of
the M13 bacteriophage using a method originally designed
for electronic structure theory. This method (the phonon
functional method) can be used on large systems to determine
the lowest frequency modes. The NMA of the M13
bacteriophage has shown that the flavor of the lowest frequency
modes are similar to those predicted by continuum elastic
theory, however, there are noticeable differences between the
two. Continuum theory predicts the first few lowest frequency
modes of the M13 capsid well, however it misses a significant
portion of other low frequency modes that are captured with
an atomistic structure. This will have consequences on the
prediction of the relative Raman spectra as the continuum
theory will miss the contribution from other low frequency
modes.

Although a continuum theory can give reasonable
predictions of the mode flavor and frequency of the first few
lowest modes of the M13 capsid, an atomistic picture provides
additional detail by providing (i) relative atomic motions, (ii)
the splitting of frequencies due to asymmetry, and (iii) a more
complete low frequency spectrum.

Finally, we note that while the phonon functional
method has been used here to study the low frequency
vibrational spectrum of the M13 phage, the method has broader
applicability to other systems. One example is large proteins,
where the dynamic motions of the molecule can often be
described by a few low frequency normal modes [48], that can
be thought of as ‘generalized’ coordinates. Thus the phonon
functional method can provide a way to determine the normal
modes of a variety of large systems with atomic detail.
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Appendix. Dynamical matrix operator

In this appendix, we show how the calculation of the dynamical
matrix operating on a vector can be computed without explicit
storage of the entire matrix. The discussion is specific to the
case of a fully atomistic empirical energy model of the form

V =
∑

bond

kb(d − deq)
2 +

∑

ang

kθ (θ − θeq)
2

+
∑

dih

vn

2

[
1 + cos(nφ − γ )

]

+ 1

2

∑

i, j

(
qi q j

εd
+ Ai j

d12
− Bi j

d6

)
. (A.1)

Since equation (A.1) is a sum of individual energy terms, the
operation of the dynamical matrix on a general vector u can be
calculated term by term, in the same fashion that the total force
is accumulated during a molecular dynamics simulation. Thus,
the dynamical matrix operation can be written in the form

u′
iα = (D̂u)iα =

∑

jβ

1√
mi m j

∂2V

∂riα ∂r jβ
u jβ (A.2)

where i, j label the atom number and α, β = x, y, z. The
second derivatives are calculated analytically each time the
dynamical matrix operation is required so that only a few of
the matrix elements need be stored in computer memory. Since
the calculation of the force vector in a molecular dynamics
simulation proceeds in a similar manner and each energy
term only contributes to a few matrix elements, the rough
computational cost of the dynamical matrix operating on a
single vector is on the order of a single molecular dynamics
step where each step is of order N in difficulty.

The ability to calculate the dynamical matrix operating
on a vector in order N steps requires that a finite cutoff for
the non-bonded interactions must be used. This presents no
problem for the short ranged van der Waals interactions (r−6

and r−12 terms), the screened Coulomb interaction is not as
accommodating. Caution must be taken with the Coulomb
terms as it has a long range dependence. Tests with medium
sized molecules such as ubiquitin (unpublished) show that the
effect on frequencies and eigenvectors from varying the cutoff
between 10 and 30 Å is relatively modest (<10% error).

As an example of how the dynamical matrix calculation
proceeds, consider a single Coulomb term between atoms m
and n. This single term contributes to 36 dynamical matrix
elements (3 degrees of freedom times 2 atoms, squared). The
second derivatives of the energy with respect to position are
easily calculated in terms of first and second derivatives of the
distance between the atoms d (d = |�rm − �rn|) as

∂2Vc

∂riα ∂r jβ
= ∂2Vc

∂d2

∂d

∂riα

∂d

∂r jβ
+ ∂Vc

∂d

∂2d

∂riα ∂r jβ
. (A.3)

The first and second derivatives of Vc with respect to d are
trivial, ∂2Vc

∂d2 = +2 qmqn

εd3 , ∂Vc
∂d = − qm qn

εd2 . The derivatives of

d are given by ∂2d
∂riα ∂r jβ

= − ∂d
∂riα

∂d
∂r jβ

+ δαβ
d (δim − δin) and

∂d
∂riα

= rmα−rnα
d (δim − δin), where δim etc are Kronecker delta

functions After the appropriate derivatives are calculated, the
36 dynamical matrix elements are temporarily formed and
the appropriate components of vector u are multiplied by the
matrix elements and their contribution to the vector u′ are
added in according to equation (A.2). The dynamical matrix
elements are then discarded and the procedure continues to the
next Coulomb term and the rest of the energy terms. At the end,
the vector u′ is the appropriate result of the dynamical matrix
operating on a vector u, u′ = D̂u.
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